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HIGH-FREQUENCY ASYMPTOTICS OF ACOUSTIC PRESSURE FOR 
BOUNDED WAVE BEAN SCATTERING BY AN ELASTIC SPHERE* 

A.P. PODDUBNYAK 

Asymptotic high-freqeuncy estimates are obtained for the amplitudes of 
specular and non-specular reflections with extraction of the contribution 
of sound reradiation into the surrounding medium by Rayleigh type 
surface elastic waves. The conditions are found that govern the 
magnification of scattering in the opposite direction. The theoretical 
explanation of the book reflection effect /l/ for bounded sound beam 
incidence on the plane interface of a fluid-elastic solid is given by 
many authors in different situations (/12/, say). As for non-specular 
reflection of a plane sound wave by bounded elastic bodies (plates, 
cylinders, rods, and shells enclosed in a screen), studied most 
thoroughly in /3-g/, this effect is a consequence of satisfying the 
space-time resonance conditions between the incident acoustic wave and 
the normal surface waves excited in an elastic solid under total internal 
reflection. 

It is interesting to clarify and describe the book reflection of a bounded sound beam 
incident on the curvilinear interface between two media. Selection of the contributions of 
surface waves in the echo signal from elastic cylinders was carried out experimentally /lo, 
ll/ by sounding a narrow part of an object surface by a pencil beam near the critical angles 
of surface acoustic wave excitation. An analytic description of such a process was given in 
/12/ for analogous wave excitation conditions in the case of spherical and cylindrical elastic 
reflectors. However, the echo signals reradiated by the surface waves were only examined in 
the domain of the geometric shadow of the objects. Non-specular reflection in the reverse 
direction directly from the sounded section of the interfacial boundary without preliminary 
residency in the shadow domain was not analysed. 

1. Let a sound beam, whose effective transverse section near the interface of two media 
is represented as a narrow circular ring of width vi, impinge on an elastic object of 
spherical shape that is in an ideal compressible fluid. The acoustic pressure of the 
incident beam is expressed by the formula 
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where the normalization constant is taken to be equal to one, the time factor e-i”’ is omitted, 

Ei is the impact parameter of the central rays of the beam, r, 0 are spherical coordinates 
with origin at the centre of the object, k= w/c is the wave number, o is the vibration 
frequency, c is the velocity of sound in the fluid, and H(x) is the Heaviside function. 
The impinging wave sounds the surface of a sphere r = a -along a ring 0 < 8_ < n - 0 -< 8+, 0* = 

ei f b/2, where fli is the beam sighting angle, and 8, is the angular width of this ring. 
We will find the complex amplitude of the acoustic pressure in the scattered wave in the form 
of an expansion in partial waves /12/ 

psc p, 8, o) = i j? (I t- +-) fr” (x) hll) (kr) p, (~0s eh x = ka (~3 
& 

fl” (5) = i 
i,” (4 F, (4 - ZilO’ (4 

hl’) (z) F, (z) - d&y (2) 
(1.3) 

n-s- 

fl”@)= s eixCo*aPl(cosa)sinada (1.4) 
n-a+ 

Fig.1 Fig.2 

0 
40’ 

Fig.3 

Here h&l) (x) is the spherical Hankel function of the first kind, 
Legendre polynomial, f:(z) 

P, (cos 0) is the 
is the partial scattering amplitude, and F, (2) is the com- 

pliance function of the obstacle, that depends on the wave dimensions and the physico- 
mechanical parameters of the object /13/.- The sound pressure in 
characterized by the scattering amplitude f (0, k): 

psc (r, 8, CO) = r+eiarf (0, k) 

the wave field (r+ W) is 

(1.5) 

Let us examine the dependence of the moduli of the scattering amplitudes on the beam 
sighting angle 8i for a steel sphere submerged in water /13/ with the wave radius I = 314.36 
for values of the beam sweep angle e0 equal to 4, 8, and 20' (Figs-l, 2 and 3, respectively). 
The scattering amplitudes are calculated in the location direction with extraction of the 
potential scattering corresponding to the case of an acoustically rigid fixed sphere g(n,k)= 
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1 f (n, k) - r”’ (Jb k) I 1 (24 The beams are well collimated, since 3.5 incident wave lengths are 
packed along the width of the sounded ring on the sphere surface even for eo = 4" . Scanning 
by the beam sighting angle from small to large values for a fixed beam width successively 
clarifies the domain of magnified reverse reflection of whispering-gallery waves of the 
longitudinal type (&=15') and the transverse type (6,=26'), as well as of Rayleigh waves 
(6, 2 27.4"). The wave dimensions selected for the sphere correspond approximately to 
disposition of the Rayleigh spectrum line of one of the partial scattering amplitudes (1=142). 
Hence the scattering amplitude fluctuations in the domain of the critical excitation angle of 
Rayleigh-type surface waves are resonance in nature. They are due to the passage of the 
sound spot through the Fresnel quarter-wave zone during scanning at the sighting angle, and 
to the absence of the contribution of other kinds of waves. Scattering amplitudes are 
considerably influenced by refracted waves of longitudinal, transverse, and mixed, 
longitudinal-transverse types rereflected a multiple number of times from within by the 
sphere surface in the domain of critical whispering-gallery wave excitation angles. 

We note that back-scattering for plane-wave incidence on a sphere occurs because of 
multiple diffraction of perispherical waves and rereflected bulk waves. Pencil-beam sounding 
of a deformable solid by a bounded beam discloses magnified non-specular reflection directly 
from the excited part of the surface when the space-time synchronization conditions between 
the incident beam and the reradiated waves are satisfied. 

2. It is known that the formation of a pencil-beam sound within linear acoustic limits 
is possible only for sufficiently high frequenciesof the time spectrum x>l. The angular 
spectrum band should obviously also be high-frequency, i.e., partial waves with large values 
of the angular moments 1 should be excited. Under these conditions, an asymptotic analysis 
of the solution of the scattering problem is possible. 

We will apply Poisson's formula /14/ to the series (1.2). We then obtain 

(2.1) 

if hX(h)h~~,,,(kr)Ph_,,,(cos O)@mh dh (m = O,_+ I,+ 2,. . .) 
0 

where X (h) is an interpolating function /14/ that goes over for h = 1 +112 into fi" (x), 
Pk__rl,(z) is the Legendre function of the first kind. 

It can be shown by asymptotic evaluation of the integrals that the series (2.1) 
describes a multiple scattering process (with multiplicity ]rn.(> 1) caused by sound-wave 
diffraction by the closed surface of an object, and rereflection of elastic waves for sound 
transmission within the obstacle. 

We will examine the zero-th term in these formulas taking boundedness of the incident 
beam into account. Using relationships (1.5), we find in the wave zone 

pso (r, 8, 0) = F1eikrjO (e, k) (i---f =I) (2.2) 

jo(e,k) = +eni/rS hx (h) e-nihlzPa_x,, (cos 0) dh 

We introduce the dimensionless impact parameter E = his(h x> 1; 0< z(1). Evaluating 
the incomplete Bessel spherical functions &I. (x) in the functions X(h) by the saddle- 
point method (see Formula (1.4) for 2 = h-1/)), we find 

jO (0, k) = fO1 (0, k) +- foa (0, k) (2.3) 

f02(U,k)= +l/'+sinei exp(- ircose,) y, exp[- ni(v -t 1)/41x 
Y=*l 
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y (%) = F%-‘/. (4 + i= cc 
+x,* (4 + i.t 1/i - E’ 

where r(g) describes the high-frequency reflected , rereflected, and surface acoustic waves. 
Thus, for instance, we have for the case of a continuous elastic sphere 

z (5) = Rl, (5) + fz (%)/[I - fl (%)I (2.4) 

where R,, is the reflection coefficient of the sound wave reflected from the interface of 
the media, and the functions fi, fz /16/ correspond to the contributions of waves rereflected 
within the scatterer. 

We assume that sounding of the sphere occurs along a part of its surface near the 
critical angle of Rayleigh-wave excitation. Then relationships (2.4) become 

r (E) = &, (E) = --R* (E)IR (E), R (E) = B (E) + N,A (E) (2.5) 

where p and pS are the density of the surrounding fluid (gas) and the material of the 
sphere, CL and CT are the longitudinal and transverse wave propagation velocities in the 
elastic sphere, and the asterisk denotes the complex conjugate quantity. 

The pole of the function r(E) (A Regge pole of Rayleigh type) is determined by solving 
the dispersion equation R(E) = 0, where for large x this solution can be obtained by suc- 
cessive approximations /17/ 

%=%FZ= $[llT f BS-' +0(x-a)]= sines, es = 0s + iyn (2.6) 

where n = %srn is the solution of the dispersion equation for the case of a plane interface 
for an acoustic-fluid-elastic half-space %nRm =Z/Fa,Ca 

and i3~ 
is the complex Rayleigh-wave velocity 

/18/, is the complex critical angle of surface elastic wave excitation on a sphere 
in a fluid. In particular, we find for N, <I 

VT = ET + al-, CT = cT 1 -t vg 

CR - = U,862+ 1.14~ ’ e[. = L!L 
s CR 

m 
iNBcrYI d 

aT = - 8ceTy [ I-- 2&T2 -k +yI,yTI+ +Ta 
c 

CLYT 'TyL -' 
-+- 
CTYL CLYT )I y=1/1--, ETA 

CRm 
, YA= 1/EA2-- (A= L,T) 

(2.7) 

Here Cam is the Rayleigh-wave velocity for an elastic half-space adjoining a vacuum 
/18/ and v, is Poisson's ratio of the material. 

On the basis of (2.5)-(2.71, we represent the reflection coefficient near the Regge pole 
in the form 

(2.8) 



where En* is the zero of the function R*(%), complex conjugate to %,+ 
We also perform an asymptotic evaluation of the integrals in the functions fox and fo2 

from (2.3) by the saddle-point method. If the Regge pole is sufficiently remote from the 
real axis of the complex plane of the variable c = % + i Im 5, then the principal part of the 
asymptotic is determined by the contribution from the saddle point E,. For Im%R<l((Y~<l) 
the case should also be considered when the Regge pole is near the saddle point whose location 
on the real axis depends on the scattering angle 8 /19/. Thus we obtain 

fol (e, 4 +eexp L -22ixc0s(~)]A1,(%,)H(eo-~~- tq) (2.9) 

for the function fol for Im En not small and taking into account that E, = sin[(n - 8)/2] 
i.e., the value 8 satisfies the approximate equality TC - 0 zs 28i (9,<&). Formula (2.9) 
therefore corresponds to specular reflection. According to (2.6) and (2.8) the maximum 
magnification of a specularly reflected wave occurs when the beam is incident at the critical 
Rayleigh angle: Oi z en. We arrive at an analogous conclusion also in the case when vH< 1. 

We will now examine the function fez. For r>i, he>1 we find 

foa (0, k) = $ I/ $$ exp (- ixcos e,) x w[-+(v+x)j x 
Y, x=*1 

(2.10) 

m 

s fY (8 exp [- ixqvx (%)I d% 

fv (%Y = 5 1/ 1 - %2 % (%I y (%) Rl, (5) 

qVx (5) = 1/i - Ez + E [arcsin 5 - v (n - ei) - xei 

Since only two positive roots %- = Y sin(n - 8 - ei), are determined from the equation 
pVx' (5) = 0 where n - 8 > 8i if v = 1,x = -1, and 0-<n--8,(8i if Y=--1,x=1, then 
to obtain the principal terms of the asymptotic expansions in (2.10) it is sufficient to con- 
fine oneself to examining the terms for Y = 1, x = -1 and Y = -4, :: = 1. Evaluating the 
integrals occurring here by the saddle-point method under the conditions that the Regge pole 
can be near the saddle point /19/, we obtain 

f02 05 k) = ” F, (e, k) 
v=*1 

(2.11) 

F, (0, k) = exp {ir [cos (n - I&) + cos (n - 8 - ei)l} x 

{a, sgn (Im b,) exp (-zbv2) erfc [---ib, di sgn (Im.b,)l + 

(TC~T-~~~ TV) H IV (n - 8 - e,)] 
sineR 

a,= 7 
1/ 

sin tli 
it sinecos BR (coseR + ~0s @) @'v (%R)Ik~~R,R1l (5) 

b, = e-xi/a (cos(n -e - ei)- cos i?IR - [FIR -- Y(ZX - e - ei)] sin~R}'~~ 

TV = hfV(%V) + +' h = e-x’l4 1/'2 cos(n - e- ei) 
Y 

(2.12) 

As 1 b, 1 Jr:-+ 00 (v = +I), when the Regge pole (2.5) is remote from the real axis (vR> 

1) , we find from (2.12) 

Fv 64 k) = & 2 SL” ei 
sine cos (n _ e _ e.) exp (- ix cOse4 X 

fv (Ed H [V (n - e - &)I = 0 (z~“), v=+l 

(2.13) 

i.e., the contribution to the scattered field (2.3) is formed because of the specular re- 
flection (2.9). 

If lb, II/G is not a large quantity, then the behaviour of the functions FV is 
determined mainly because of the exponential function and the function in (2.12). Thus, for 

jbyI1/+O (v=*l) 

Fv (4 k) = exp (-ix cos ei) [a, sgn (Im bv) exp (-sbv2) + (2.14) 

p5iG T,I H [Y (X - e - ei)i 



If the Regge pole (2.6) here has a small imaginary part, the conditions 

b,*,a,-iig,+o(VR*)-+O (v=-fl) 

&, = VR((~ + l/BVsp)[V(II - 0 - ei)- &]Cos@R - %VR*SiROR) 

pv = COS (n - 0 - ei) - (1 - ‘/PR”) COS OR + (1 + %VR*) x 

[V(n-e-ei)-&]sineR 

are Satisfied if .n - e=% + OR for v=l and n-e %ei-eR>O for V= -1. 
Analysis of expressions (2.12) and (2.14) shows that an exponential increase in the 

moduli of the complex amplitudes occurs if 

X - 8 < ei + OR + Ae (V = i), n - 8 > oi - OR - A8 2 o (V = -1) (2.15) 

A8 = 2vR2 tg eR/(6 + vRa) 

where it is necessary that the sighting angle of the incident beam & exceeds somewhat the 
critical angle of the surface wave OR to satisfy the condition at v= -1. We note that 

the effect of amplitude growth is negligible since the quantity 1 b, 11/E grows rapidly when 

(2.15) are satisfied and (2.14) loses its meaning, i.e., the asymptotic form (2.13) becomes 

valid. For a fixed x the magnification effect is determined by the function T,. The values 
of 1 T, 1 are important if 

n-e=ei+e,+Atl (V = I), n--o=&--&-A8>o (V=-i) (2.16) 

Here 

b, 1 e-ni/4 vR l/1/2 cos OR = 0 (VR) (v = i_ 1) 

It is seen from (2.12) that the greatest magnification of the function T is obtained if 
8i = OR + A8, since then 

a, z [sh ('/&$,VR COS eB)/(VR 1/COS &)],reS R,, (Sin 6,) 

Therefore, an exponential magnification of the function F,, and therefore, foe also, 
occurs as a result of Rayleigh-wave reradiation for the scattering angle n - 8 = 2ei + Ae, 
i.e., in the specularly reflected wave direction. At the same time the function a-, is not 
magnifying for t3i N eR. However, it follows from conditions (2.16) that the equality 8i = 

eR + A0 corresponds to the scattering angle 8 =x, i.e., reverse (non-specular) reflection 
occurs here. A significant increase in Ifon 1 occurs near I3 = SC - 6 (0 < S<l) because of 
the focusing factor contained in the function a_, in (2.12). 

We note that the asymptotic formulas (2.12) are not satisfied in this situation. Con- 
sequently, the behaviour of the scattering amplitude foa(8, k) is examined separately for 
e+n. 

3. If the acoustic signals are taken for angles 0z n, then the expression for f(e, k) 
from (1.5) can be conveniently rewritten in the form 

Furthermore, using Poisson's formula and satisfying (2.1)-(2.3) by analogy with 
relationships (1.5), we obtain the asymptotic evaluation of the integrals (J,(z) is 
Bessel function) 

the 
the 

f (0, k) N nia, sgn (Im b) exp (- zbva) erfc [ - ibl/.&gn (Im b)] + 1/n/~ T D (3.2) 

b = e-n@ v/cos ei - cos 6, - (ij, _ ei) sin e, 

Sin [a 4, (sin GR + Sin A,)] (R*’ (ER*)/R’ (ER)) I, [Z (a~ - 8)sin GR] 

T, = expnila 1/2 cos Bi f (sin ei) + a,/b 

f (sin ei) _ ik f x tK -- e;cuei sin 2% sin cse, sin &) x 

R,,(sin&)I,[z(n - Qsin e,]exp(- ni cos&) 

(3.1) 

Analysis of (3.2) shows that for Ed = 1 ei - eR I#0 the modulus of the scattering 
amplitude for vH> 0 has the form: If@, k) I- exp (-xvRe, cos 0,). The magnifying effect 
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of non-specular reflection is obtained for 0jz eR, vR< 1; then (1.3) becomes 

f p,, k) z q 1/ 22 @ ,,“‘,““” eR sineasin(28,sineR)(R*'(gR*)/R'(~R)) x (3.3) 

J,[(n-- e)ssin eEj8xp[- ix(l + ~/~vR~)~~s enI x 

i 
erfc(u) + -&expl(- u") 2 '~~~$/*) [- 2u + exp (- 2iu2) X 

7l=--cs 
-- 

(Zuchnu+ inshnu)]], u =Z/~vR1/x~oseR 

It follows from (3.3) that the maximum value of the modulus of the non-specular re- 
flection amplitude, as well as of the location scattering cross-section, will hold when the 
number of waves, a multiple of a quarter of a Rayleigh surface wavelength, is stacked along 
the width of the ring being sounded on the sphere surface 
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